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Abstract. The purpose of this note is to give an exposition of the result [4] by Christoudoulous and
Klainerman on global nonlinear stability of the Minkowski spacetime. We introduce the background,
present an overview of the methods, and emphasize intuitions behind the ideas. Most of the
materials are drawn from the introduction part of [4] and the relevant chapter on [3].

Contents

1. Preliminaries 1
2. Introduction 3
3. Acknowledgement 4
4. A Program for the Proof 4
5. The Setup: Asymptotically Flat Initial Data 5
5.1. Asymptotic Flatness 5
6. Conserved Quantities: Preservation of Symmetry 6
6.1. A Simple Example 6
6.2. Einstein Vacuum Equations 7
6.3. The Time Translations 8
6.4. The Space Rotations 8
6.5. The Conserved Quantities and Smallness Assumption on Initial Data 10
References 11

1. Preliminaries

Suppose we have a Lorentzian spacetime pM,gq with covariant differentiation D.

Definition 1.1. Given vector fields X,Y, Z on pM,gq, the Riemannian curvature tensor is
defined by

RpX,Y qZ :“ pDXDY ´ DY DXqZ ´ DrX,Y sZ

or, in coordinate form, we put

Rγσαβ “ g

ˆ

R

ˆ

B

Bxα
,

B

Bxβ

˙

B

Bxσ
,

B

Bxγ

˙

The Ricci curvature tensor is given by

Rµν “ gαβRµναβ

and the scalar curvature is given by

R “ gµνRµν

Theorem 1.2 (Bianchi Identity). We have the Bianchi identity

(1.3) DrεRαβsγδ :“
1

3
pDεRαβγδ ` DαRβεγδ ` DβRεαγδq “ 0

1
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Definition 1.4. A hypersurface H Ă M is called spacelike if at each x P H the metric

gx|TxH “: gx

is positive definite.

Definition 1.5 (Second Fundamental Form). The second fundamental form k of (H, g) is a 2-
covariant, symmetric tensor field on H defined by

kpX,Y q “ gpDXN,Y q

for X,Y P TxH. Here N is the outward normal vector at x P H.

Definition 1.6 (Cauchy Hypersurface). A Cauchy hypersurface H Ă M is a complete, spacelike
hypersurface such that any causal curve γ Ă M intersects H at most once.

A spacetime admitting a Cauchy hypersurface is called globally hyperbolic.

Definition 1.7 (Time Function). A time function t : M Ñ r0,8s is a differentiable function such
that

xdt,Xy ą 0

for all X P I`
p where p P M.

Topologically, a space-time foliated by the level surfaces of a time function is diffeomorphic to
a product manifold R ˆ Σ where Σ is 3-dimensional. We also note that the space-time can be
parametrized by by points on the slice t “ 0 by following integral curves of Dt. Relative to this
parametrization, the space-time metric takes the form

(1.8) ds2 “ ´ϕ2pt, xqdt2 `

3
ÿ

i,j“1

gijpt, xqdxidxj

where x “ px1, x2, x3q are arbitrary coordinates on the slice t “ 0.

Definition 1.9 (Lapse Function). The function

ϕpt, xq “ ´
1

xDt,Dty1{2

above is called the lapse function of the foliation.

The foliation is said to be normalized at infinity if ϕ Ñ 1 as x Ñ 8 on each leaf Ht.

Proposition 1.10. Consider a frame pe1, e2, e3q on Ht, we have

kij :“ kpei, ejq “
1

2ϕ

Bgij
Bt

We also mention some basic facts about Lagrangians and Euler-Lagrange equations. Denote by
x the the independent variables xµ, µ “ 1, ..., n, by q the dependent variables qa, a “ 1, ...,m, and
by v the first derivatives of dependent variables vαµ . Then the Lagrangian L is a given function

L “ Lpx, q, vq

Then a set of functions puapxq : a “ 1, ...,mq is a solution of the Euler-Lagrange equations, if
substituting

qa “ uapxq

vαµ “
Bua

Bxµ
pxq

We have
B

Bxµ

ˆ

BL

Bvaµ
px, upxq, Bupxqq

˙

´
BL

Bqa
px, upxq, Bupxqq “ 0
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There are advantages of formulating an equation as a Euler-Lagrange equation, since we have the
following Noether’s theorem that connects preservation of symmetry and conserved quantities.

Theorem 1.11 (Noether’s Theorem). In the framework of a Lagrangian theory, to each continuous
group of transformations leaving the Lagrangian invariant there corresponds a quantity which is
conserved.

Remark 1.12. If we are on a Pseudo-Riemannian manifold pM,gq, we sometimes say a Lagrangian
L is of the form

L “ L˚dµg

where dµg is the volume form and L˚ is a scalar function as above.

2. Introduction

We have the Einstein Field Equations

(2.1) Gµν “ 8πTµν

where

Gµν “ Rµν ´
1

2
gµνR

and Tµν is related to the presence of some matter fields. In the simplest situation of the physical
vacuum, T “ 0. We then have

Rµν ´
1

2
gµνR “ 0

Taking trace on both sides we have
R “ 0

so we get the Einstein vacuum equations

(2.2) Rµν “ 0

which is our primary object of study.
Suppose that the space-time pM,gq can be foliated by the level sets of a time function t, we

can write our space-time metric in the canonical form as in (1.8). The E-V equations are then
equivalent to the following constraint equations

(2.3) ∇jkji ´ ∇itrk “ 0

(2.4) R ´ |k|2 ` ptrkq2 “ 0

and the evolution equations

(2.5) Btgij “ ´2ϕkij

(2.6) Btkij “ ´∇i∇jϕ ` ϕpRij ` trkkij ´ 2kiak
a
j q

where i, j P t1, 2, 3u.
We first observe that the evolution equations have 13 unknowns while there are only 12 equations

in total. This gives us the freedom to choose the time function.
Moreover, in view of Bianchi identities, if g and k satisfy the evolution equations, the constraint

equations are automatically satisfied on any time slice Ht given that there is an initial slice Ht0

on which the given conditions for g and k are satisfied. We can thus formulate the E-V equations
as a Cauchy problem. That is, given an initial data set pΣ, g, kq that satisfies the constraint
equations, we want to find unknowns pHt, gptq, kptqq that solve the evolution equations and satisfy

pH0, gp0q, kp0qq “ pΣ, g, kq

For convenience of notation, we usually suppress the dependence of g and k on time t.
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The celebrated results of Choquet-Bruhat and Geroch give the local existence and maximum
development of the Cauchy problem.

Theorem 2.7 (Choquet-Bruhat, Geroch, [1], [2]). Any initial data set pM, g, kq satisfying the
constraint equations gives rise to a unique maximal development.

The proof involves writing the (foliated) E-V equations under harmonic coordinates and showing
that the problem can be reduced to showing local wellposedness of a nonlinear wave equation.

After a local existence result is proven, there are two natural questions one can ask:

(1) How long is the maximal time of existence? Can we prescribe a set of initial data that give
rise to global existence?

(2) Are the solutions we obtain stable? That is, if two sets of initial data are very close to each
other, will they stay close under time evolution?

The seminal work of Christoudoulou and Klainerman [4] gives an affirmative answer to the above
questions. The goal of this note is to give an exposition of some elements involved in their proof.

We also want to mention that the work of Bieri [6] extends the above result to more general
asymptotically flat initial data. Using harmonic coordinates, Lindblad and Rodnianski [5] also
gave a proof of a similar stability result. The argument is less lengthy than in [4], while it also has
a less precise description of the geometry.

3. Acknowledgement

This note serves as the final project to MATH 636, Topics in Differential Geometry: General
Relativity, at the University of Michigan in Winter 2024. I appreciate professor Lydia Bieri for
giving references and suggestions on this project. Her passionate and energetic delivery of lectures
helped me learn a lot of these material.

4. A Program for the Proof

Before we state a rigorous version of the main theorem being proved, we give a heuristic version
of the theorem and a program of the proof.

Theorem 4.1 (Global Nonlinear Stability of Minkowski Spacetime, Version 1). Any “strongly
asymptotically flat” initial data satisfying a suitable smallness assumption leads to a unique globally
hyperbolic and geodesically complete development.

Given a desirable set of initial data I, let tmax P p0,8s be the time of maximal development to
the Cauchy problem. At a very high level, the proof relies on a continuity or bootstrap argument
roughly as follows.

Step 1: One designs a continuous in time quantity related to the E-V equations (2.2) and
denote it by

QpI, tq

Here the notation QpI, tq means that it depends on the initial data I and time 0 ď t ď tmax.
Given ε0 ą 0, we define

t˚ “ maxt0 ď t ď tmax : QpI, tq ď ε0u

and denote by

Ut˚ :“
ď

0ďtďt˚

Ht

the spacetime slab up to t˚.
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Step 2: Using energy estimates, one can show that if the initial data is sufficiently small in
some suitable sense, one actually has

QpI, tq ď
ε0
2

for 0 ď t ď t˚. At the mean time, the data at t˚ preserves essential structures satisfied by
the initial data.

Step 3: Given the desirable traits of the data at time t˚, one can use it as a new set of “initial
data”, and extend Ut˚ to Ut˚`δ for some δ ą 0. If δ ą 0 is small, we still have

QpI, tq ď ε0

up to t˚ ` δ. If t˚ ă 8, the maximality of t˚ is contradicted. Thus t˚ “ 8 and tmax “ 8,
as desired.

5. The Setup: Asymptotically Flat Initial Data

5.1. Asymptotic Flatness. We first have to define the notion of strongly asymptotically flat
initial data. Roughly speaking, an initial data set pΣ, g, kq is asymptotically flat if the complement
of a finite (in volume) set in Σ is diffeomorphic to the complement of a ball in R3. On such initial
data, we can define appropriate notions of energy, linear and angular momentum.

Definition 5.1 (S.A.F. Initial Data). We say that an initial data set pΣ, g, kq satisfies the S.A.F.
condition if g and k are sufficiently smooth and there exists a coordinate system px1, x2, x3q defined
in a neighborhood of infinity such that, as

r “

„ 3
ÿ

i“1

pxiq2
ȷ1{2

Ñ 8

we have

gij “ p1 ` 2M{rqδij ` o4pr´3{2q,

kij “ o3pr´5{2q

Remark 5.2. (1) A function f is said to be ompr´kq resp. Ompr´kq as r Ñ 8 if Blf “ opr´k´lq

resp. Opr´k´lq for any l “ 0, 1, ...,m.
(2) We call the leading term in the expansion of gij the Schwartzschild part of the metric g.

Definition 5.3. We can define the ADM energy E, linear momentum P , and angular momentum
J as follows:

E “
1

16π
lim
rÑ8

ż

Sr

ÿ

i,j

pBigij ´ BjgiiqN
j dA

Pi “
1

8π
lim
rÑ8

ż

Sr

pkij ´ ptrkqgijqN
j dA, i “ 1, 2, 3

Ji “
1

8π
lim
rÑ8

ż

Sr

ϵiabx
apkbj ´ gbjtrkqNj dA, i “ 1, 2, 3

Here N j are components of the normal vector, and ϵiab are coefficients of the volume form with
respect to an arbitrary frame.

We briefly explain where the definitions come from. First we have the following classical theorem
of Noether (Theorem 1.11). The Einstein-Weyl Lagrangian is defined by

L “ L˚dµg
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where

L˚ :“ ´
1

4

?
´ggµνpΓβ

µαΓ
β
να ´ Γβ

µνΓ
α
βαq

and the Euler-Lagrange equation of the Einstein-Weyl Lagrangian gives rise to Einstein vacuum
equations. Noether’s theorem (1.11) tells us that we are able to get some conserved quantities out
of transformations that leave the Einstein-Weyl Lagrangian invariant. On a space-time manifold
that satisfies certain asymptotic flatness assumptions, one can thus define

(1) Energy that corresponds to time translations.
(2) Linear momentum that corresponds to space translations.
(3) Angular momentum that corresponds to space rotations.

Moreover, these quantities are geometric invariants, meaning that they do not depend on the un-
derlying Riemmanian metric as long as it is asymptotically flat. Choosing appropriate coordinates,
we can assume

g0ν “ 0

and we get the expressions in agreement with the ones in 5.3.
A more detailed discussion on these physical quantities can be found in [3].

6. Conserved Quantities: Preservation of Symmetry

One main difficulty in the proof is finding globally conserved quantities.

6.1. A Simple Example. If we look at the linear wave equation in R3

(6.1) B2
t u ´ ∆u “ 0

we know that the energy

(6.2) Eptq :“

ż

R3

|Btu|2 dx `

ż

R3

|∇u|2 dx

is conserved, since integration by parts yields

1

2

dEptq

dt
“

ż

R3

Btu pB2
t u ´ ∆uq dx “ 0

We also note that if u is a solution, then any derivative of u is also a solution, so we can define
the energy Eptq analogously for any derivative of u. Moreover, linear combinations of solutions is
again a solution. This way we obtain many conserved quantities under this linear evolution.

When our equation is, for example, quasilinear, meaning that it has the form

(6.3) B2
t u ´ apu,Duq∆u “ fpu,Duq

we can still define Eptq as above for u and space derivatives of u, but we get

(6.4)
dEptq

dt
“ error terms

In this situation, we want to exploit the symmetry of the equation and get more positive globally
conserved quantities, so that we can control the error terms and bound

dEptq

dt
ď CptqEptq ` Dptq

where Cptq and Dptq only depend on the initial data and the globally conserved quantities.
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6.2. Einstein Vacuum Equations. We begin by recalling a definition.

Definition 6.5 (Conformal Killing Vector Field). A vector field X on pM,gq is conformal killing
if

LXg “ λg

for some scalar function λ on M. Conformal killing vector fields give rise to conformal isometries
of the spacetime manifold.

In the context of Einstein vacuum equations, the analogy of derivatives is Lie derivatives with
respect to conformal killing vector fields. That is, if Ψ solves the linearization of the E-V equations
and X is a conformal killing field of the solution space-time, LXΨ is again a solution to the
linearized E-V equations. Therefore, to close our argument, we want to find such conformal killing
vector fields of the solution space-time to E-V equations to construct conserved positive integral
quantities.

In implementing the idea above, one encounters a significant difficulty: a general space-time
only has a trivial conformal isometry group, so there is no guarantee that one can find the desired
conformal killing vector fields. However, spacetime arising from S.A.F. initial data is expected to
approach the Minkowski spacetime in some sense as the time tends to infinity. The Minkowski
spacetime does have a large conformal isometry group, so the hope is to define near time infinity
the actions of the conformal group of Minkowski spacetime, and extend the actions backwards in
time. The vector fields we get out of these actions are not exactly conformal killing, but we hope
that their deformation tensors are globally small and tend suitably fast to 0 as t Ñ 8.

We first recall the conformal group of the Minkowski spacetime.

(1) Spacetime translations. They are generated by the vector fields

Tµ “
B

Bxµ
, µ “ 0, 1, 2, 3

(2) Spacetime rotations. They are generated by the vector fields

Ωµν “ xµ
B

Bxν
´ xν

B

Bxµ
, µ, ν “ 0, 1, 2, 3, µ ă ν

(3) Scale transformations. They are generated by the vector field

S “ xµ
B

Bxµ

(4) Inverted spacetime translations. They are given by

Ipx̃q “
x̃

px̃, x̃q

where
px, xq “ ηαβx

αxβ

They are generated by the vector fields

Kµ “ 2xµS ` px, xqTµ

When it comes to our strategy, it turns out that one has to restrict attention to a subgroup of
the conformal group above due to some technicalities. Those are

(1) The time translations.
(2) The scale transformations.
(3) The inverted time translations.
(4) The spatial rotation group Op3q.

We briefly talk about how to define actions corresponding to (1) and (4) in our solution space-
time to the E-V equations, which are the major difficulties.
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6.3. The Time Translations. Remember that the 1 degree of freedom in the evolution equations
allows us to choose the time function, and the group of time translations corresponds to the choice
of a canonical maximum time function t. In fact, an inappropriate choice of time function might
lead to a finite-time breakdown. To see this, suppose we choose the time function t such that the
Lapse function

Φ ” 1

Taking trace of (2.6) and using (2.4), we have

Bttrk “ ´∆ϕ ` ϕpR ` ptrkq2q “ |k|2 ě ptrkq2(6.6)

showing that trk will blow up in finite time.

Definition 6.7 (Maximum Time Function). A maximal time function is a time function t whose
level sets are maximal spacelike hypersurfaces which are complete and tend to parallel spacelike
coordinate hyperplanes at spatial infinity. Here maximal means that the volume of the hypersurface
is maximized among all compact perturbations of it. Moreover, we require the associated lapse
function Φ to tend to 1 at spatial infinity.

The maximality condition is satisfied by imposing

(6.8) trk “ 0

We in addition impose the canonical assumption

(6.9) Pi “ 0

at all time, so that t is fixed up to addition of a constant. In fact, we only need to impose (6.8)
and (6.9) on the initial data, since it will be preserved under the evolution equations.

Let Ht be the level surface at time t, we define the time translation subgroup tfτuτ where fτ is
a diffeomorphism between Ht and Ht`τ . As we have seen above,

(6.10) T :“
B

Bx0

is a generating vector field of such action.

6.4. The Space Rotations. The rotation subgroup Op3q is defined to satisfy the condition that
it takes any hypersurface Ht to itself. We use the following figure to illustrate what we do before
we proceed to a more rigorous discussion.

We begin our construction by introducing the optical function u, which is a solution of the
Eikonal equation

(6.11) gµνBµuBνu “ 0

The significance of the Eikonal equation is that the level surfaces Cu of u are null hypersurfaces.
For convenience, we denote

a “ ´
1

xDu,Duy1{2

The 2-surfaces of intersection

St,u :“ Ht X Cu

shall be orbits of the rotation subgroup Op3q on each Ht.
Let pHt˚ , gq be the final maximal hypersurface. We consider the vector field U on Ht˚ given in

local coordinates by

U i “ a2gijBju

and note that the integral curves of U are orthogonal to St˚,u. Let tφσuσ be the 1-parameter
subgroup generated by U , we have
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Proposition 6.12. φσ restricts to a diffeomorphism of St˚,u onto St˚,u`σ. In particular,

φu : St˚,0 Ñ St˚,u

is a diffeomorphism.

Next, we introduce a metric on St˚,0 that is pulled back from “the sphere at infinity”.

Proposition 6.13. Let γ be the induced metric on St˚,u by the solution spacetime. The pullback
to St˚,0 of γ rescaled by r´2, namely

φ˚
upr´2γqSt˚,u

converges, as u Ñ ´8 (the spacelike infinity on Ht˚), to a metric γ̊t˚ with Gauss curvature equal
to 1. Hence pSt˚,0, γ̊t˚q is isometric to S2.

Therefore, the definition of the Op3q action can be defined on pSt˚,0, γ̊t˚q. We can then proceed
to define the action on Ht˚ by conjugation. Given p P St˚,u and O P Op3q, we consider the integral
curve

σ ÞÑ φσppq

of U through p. As σ Ñ ´8, it tends to some q which can be identified as a point on pSt˚,0, γ̊t˚q.
Then we can define the action

Op :“ φupOqq P St˚,u

Figure 1. Extending the action to Ht, figure drawn from [3]

The next step is extending this action to the spacetime slab

Ut˚ :“
ď

0ďtďt˚

Ht

For p P St,u, let L P TpCu be the outgoing normal vector at p normalized by requiring that its
component on T is equal to T . We define the group action on Ht for 0 ď t ď t˚ by conjugation
with the flow of L.

Lastly, we define the vector fields

tΩpaq : a “ 1, 2, 3u

that generate group actions by Op3q and satisfy

rL,Ωpaqs “ 0
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and
rΩpaq,Ωpbqs “ ϵabc Ω

pcq

For this, let p P St˚,u. We pick a basis

(6.14) tΩ
paq

0 : a “ 1, 2, 3u

of the Lie algebra of Op3q such that

rΩ
paq

0 ,Ω
pbq

0 s “ ϵabc Ω
pcq

0

We then identify them as vectors in St˚,u and flow them first along φu and then along L. These
vector fields will play an important role in defining the aforementioned conserved quantities.

Remark 6.15. The optical function u is also used to define the vector fields S and V generating the
scale transformations and inverted time translations, respectively.

6.5. The Conserved Quantities and Smallness Assumption on Initial Data. The quantity
QpI, tq we mentioned above will involve in particular the quantities

(6.16) Q1ptq :“

ż

Ht

QpL̂ORqpK̄, K̄, T, T q `

ż

Ht

QpL̂TRqpK̄, K̄, K̄, T q

Q2ptq :“

ż

Ht

QpL̂2
ORqpK̄, K̄, T, T q `

ż

Ht

QpL̂OL̂TRqpK̄, K̄, K̄, T q

`

ż

Ht

QpL̂SL̂TRqpK̄, K̄, K̄, T q `

ż

Ht

QpL̂2
TRqpK̄, K̄, K̄, T q

(6.17)

which are conserved under the evolution of linearized Einstein vacuum equation.
Here T is a generator of time translations, S is a generator of scaling, K is a generator of inverted

time translations,
K̄ “ K ` T

and also

QpL̂ORq “

3
ÿ

1

QpL̂ΩpaqRq

Q is the Bel-Robinson tensor associated with R. It is commonly used in general relativity to define
local energy, and it satisfies the following properties:

(1) It is fully symmetric and traceless.
(2) It satisfies the positive energy condition, namely QpX,Y, Z, Iq is positive wheneverX,Y, Z, I

are future-directed timeline vectors.
(3) It is divergence-free, namely

DδQαβγδ “ 0

Eventually, we state the quantity related to the smallness assumption on the initial data men-
tioned above. On our initial hypersurface H0, we define

Qpx0, bq “ sup
H0

tb´2pd20 ` b2q3|Ric|2u

` b´3

"
ż

H0

3
ÿ

l“0

pd20 ` b2ql`1|∇lk|2 `

ż

H0

1
ÿ

l“0

pd20 ` b2ql`3|∇lB|2
*

Here
d0pxq “ dpx0, xq

is the Riemannian geodesic distance between the point x and x0, b is a positive constant,

|Ric|2 “ RijRij
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and B, called the Bach tensor, is the symmetric, traceless 2-tensor given by

Bij “ ϵabj ∇apRib ´ 1{4gibRq

where ϵabj are coefficients of the volume form.

Definition 6.18 (Global Smallness Assumption). A complete metric g satisfies the global smallness
assumption if there exists a sufficiently small ε0 ą 0 such that

inf
x0PH0,bě0

Qpx0, bq ă ε0

We give a rough idea of how the global smallness assumption gets used in the bootstrap argument.
In particular, we want to estimate the error integral of deformation tensors of the approximate
killing fields we constructed, and convince ourselves that the errors are sufficiently small. Let
ε0 ą 0 and QpI, tq be as above. One shows that

|Error integrals of deformation tensors| ď Cpε0qQpI, tq

where Cpε0q Ñ 0 as ε0 Ñ 0, and obtains

QpI, tq ď C 1DpIq ` Cpε0qQpI, tq

Taking ε0 ą 0 small enough, one has

QpI, tq ď C 1DpIq

which controls QpI, tq in terms of initial data.
Eventually, we have the following more precise version of the global nonlinear stability theorem.

Theorem 6.19 (Global Nonlinear Stability of Minkowski Spacetime, Version 2). Any strongly
asymptotically flat, maximal initial data set that satisfies the global smallness assumption stated
above leads to a unique, globally hyperbolic, smooth, and geodesically complete solution of the E-V
equations, which is foliated by a normal maximal time function t.
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